Block device request merging - repeated requests.
David Woodhouse
dwmw2 en infradead.org
Lun Ene 31 12:50:40 CST 2000
axboe en suse.de said:
> There were some request changes in 2.3.41, but it should not make a
> difference. My guess is that you are not handling clustered requests
> correctly,
When I put an ext2 filesystem on the device, with 4K blocksize, it handles
clusters of 4K correctly.
But when I don't use a filesystem with it - and just use 'dd' to transfer 4k
onto the device in 1k chunks, I see four consecutive identical requests to
write all four kilobytes of data.
It looks suspiciously like an error in the request merging to me. This exact
code is working fine in 2.2, and also last time I updated it to 2.3 - 2.3.23
to be exact.
> but that is kind of hard to tell when you don't show any code.
Attached. For its headers &c, grab the whole thing from
www.linux-mtd.infradead.org - there's a standalone tarball or a patch against
2.3.41 there.
> No, definately not. Are you ending the requests correctly?
See the attached code. As far as I know, yes.
> and just say no to merging, if you like.
That's what I've done for now.
/* Linux driver for NAND Flash Translation Layer */
/* (c) 1999 Machine Vision Holdings, Inc. */
/* Author: David Woodhouse <dwmw2 en mvhi.com> */
/* $Id: nftl.c,v 1.20 2000/01/31 13:28:14 dwmw2 Exp $ */
#define PRERELEASE
#include <linux/kernel.h>
#include <linux/module.h>
#include <asm/errno.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <linux/miscdevice.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/malloc.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nftl.h>
/* NFTL block device stuff */
#define MAJOR_NR NFTL_MAJOR
#define DEVICE_REQUEST nftl_request
#define DEVICE_OFF(device)
#include <linux/blk.h>
#include <linux/hdreg.h>
#if LINUX_VERSION_CODE < 0x20300
#define RQFUNC_ARG void
#else
#define RQFUNC_ARG request_queue_t *q
#endif
/* Linux-specific block device functions */
/* I _HATE_ the Linux block device setup more than anything else I've ever
* encountered, except ...
*/
static int nftl_sizes[256]={0,};
static int nftl_blocksizes[256] = {0,};
#if LINUX_VERSION_CODE > 0x20328
static int nftl_max_sectors[256] = {1,};
#endif
/* .. for the Linux partition table handling. */
struct hd_struct part_table[256] = {{0,0},};
#if LINUX_VERSION_CODE < 0x20328
static void dummy_init (struct gendisk *crap)
{}
#endif
static struct gendisk nftl_gendisk = {
NFTL_MAJOR, /* Major number */
"nftl", /* Major name */
4, /* Bits to shift to get real from partition */
15, /* Number of partitions per real */
#if LINUX_VERSION_CODE < 0x20328
MAX_NFTLS, /* maximum number of real */
dummy_init, /* init function */
#endif
part_table, /* hd struct */
nftl_sizes, /* block sizes */
0, /* number */
NULL, /* internal use, not presently used */
NULL /* next */
};
struct NFTLrecord *NFTLs[MAX_NFTLS];
static void NFTL_setup(struct mtd_info *mtd, unsigned long ofs,
struct NFTLMediaHeader *hdr)
{
int i;
struct NFTLrecord *thisNFTL;
unsigned long temp;
int firstfree = -1;
for (i=0; i < MAX_NFTLS; i++) {
if (!NFTLs[i] && firstfree==-1)
firstfree = i;
else if (NFTLs[i] && NFTLs[i]->mtd == mtd &&
NFTLs[i]->MediaHdr.FirstPhysicalEUN == hdr->FirstPhysicalEUN) {
/* This is a Spare Media Header for an NFTL we've already found */
// printk("Spare Media Header for NFTL %d found at %lx\n",i, ofs);
NFTLs[i]->SpareMediaUnit = ofs / mtd->erasesize;
return;
}
}
/* OK, it's a new one. Set up all the data structures. */
#ifdef PSYCHO_DEBUG
printk("Found new NFTL nftl%c at offset %lx\n",firstfree + 'a', ofs);
#endif
if (hdr->UnitSizeFactor != 0xff) {
printk("Sorry, we don't support UnitSizeFactor of != 1 yet\n");
return;
}
thisNFTL = kmalloc(sizeof(struct NFTLrecord), GFP_KERNEL);
if (!thisNFTL) {
printk(KERN_WARNING "Out of memory for NFTL data structures\n");
return;
}
spin_lock_init(&thisNFTL->mutex);
thisNFTL->EraseSize = mtd->erasesize;
memcpy(&thisNFTL->MediaHdr, hdr, sizeof(*hdr));
thisNFTL->mtd = mtd;
thisNFTL->MediaUnit = ofs / mtd->erasesize;
thisNFTL->SpareMediaUnit = 0xffff;
thisNFTL->numvunits = le32_to_cpu(thisNFTL->MediaHdr.FormattedSize) / 8192;
thisNFTL->nr_sects = thisNFTL->numvunits * (thisNFTL->EraseSize / 512);
thisNFTL->usecount = 0;
thisNFTL->cylinders = 1024;
thisNFTL->heads = 16;
temp = thisNFTL->cylinders * thisNFTL->heads;
thisNFTL->sectors = thisNFTL->nr_sects / temp;
if (thisNFTL->nr_sects % temp) {
thisNFTL->sectors++;
temp = thisNFTL->cylinders * thisNFTL->sectors;
thisNFTL->heads = thisNFTL->nr_sects / temp;
if (thisNFTL->nr_sects & temp) {
thisNFTL->heads++;
temp = thisNFTL->heads * thisNFTL->sectors;
thisNFTL->cylinders = thisNFTL->nr_sects / temp;
}
}
if (thisNFTL->nr_sects != thisNFTL->heads * thisNFTL->cylinders *
thisNFTL->sectors) {
printk("NFTL capacity reduced for geometry reasons from %lx to %lx sectors\n", thisNFTL->nr_sects,
thisNFTL->heads * thisNFTL->cylinders * thisNFTL->sectors);
thisNFTL->nr_sects = thisNFTL->heads * thisNFTL->cylinders * thisNFTL->sectors;
}
thisNFTL->EUNtable = kmalloc( 2 * thisNFTL->numvunits,
GFP_KERNEL);
if (!thisNFTL->EUNtable) {
printk("ENOMEM\n");
kfree(thisNFTL);
return;
}
memset(thisNFTL->EUNtable, 0xff, 2 * thisNFTL->numvunits);
thisNFTL->VirtualUnitTable = kmalloc( 2 * le16_to_cpu(thisNFTL->MediaHdr.NumEraseUnits) , GFP_KERNEL);
if (!thisNFTL->VirtualUnitTable) {
printk("ENOMEM\n");
kfree(thisNFTL->EUNtable);
kfree(thisNFTL);
return;
}
memset(thisNFTL->VirtualUnitTable, 0xff, 2 * le16_to_cpu(thisNFTL->MediaHdr.NumEraseUnits));
thisNFTL->ReplUnitTable = kmalloc( 2 * le16_to_cpu(thisNFTL->MediaHdr.NumEraseUnits) , GFP_KERNEL);
if (!thisNFTL->ReplUnitTable) {
printk("ENOMEM\n");
kfree(thisNFTL->VirtualUnitTable);
kfree(thisNFTL->EUNtable);
kfree(thisNFTL);
return;
}
memset(thisNFTL->ReplUnitTable, 0xff, 2 *le16_to_cpu(thisNFTL->MediaHdr.NumEraseUnits) );
/* Ought to check the media header for bad blocks */
thisNFTL->lastEUN = le16_to_cpu(thisNFTL->MediaHdr.NumEraseUnits) +
le16_to_cpu(thisNFTL->MediaHdr.FirstPhysicalEUN) - 1;
thisNFTL->numfreeEUNs = 0;
/* Scan each physical Erase Unit for validity and to find the
Virtual Erase Unit Chain to which it belongs */
for (i=le16_to_cpu(thisNFTL->MediaHdr.FirstPhysicalEUN);
i <= thisNFTL->lastEUN; i++) {
union nftl_uci uci;
unsigned long ofs;
size_t retlen;
ofs = i * thisNFTL->EraseSize;
MTD_READOOB(mtd, (i * thisNFTL->EraseSize) + 512 + 8, 8, &retlen, (char *)&uci);
if (uci.b.EraseMark != cpu_to_le16(0x3c69) ||
uci.b.EraseMark1 != cpu_to_le16(0x3c69)) {
printk("EUN %d: EraseMark not 0x3c69 (0x%4.4x 0x%4.4x instead)\n",
i, le16_to_cpu(uci.b.EraseMark), le16_to_cpu(uci.b.EraseMark1));
thisNFTL->VirtualUnitTable[i] = 0x7fff;
thisNFTL->ReplUnitTable[i] = 0xffff;
continue;
}
MTD_READOOB(mtd, (i * thisNFTL->EraseSize) + 8, 8, &retlen, (u_char *)&uci);
if (uci.a.VirtUnitNum != uci.a.SpareVirtUnitNum)
printk("EUN %d: VirtualUnitNumber (%x) != SpareVirtualUnitNumber (%x)\n",
i, le16_to_cpu(uci.a.VirtUnitNum),
le16_to_cpu(uci.a.SpareVirtUnitNum));
if (uci.a.ReplUnitNum != uci.a.SpareReplUnitNum)
printk("EUN %d: ReplacementUnitNumber (%x) != SpareReplacementUnitNumber (%x)\n",
i, le16_to_cpu(uci.a.ReplUnitNum),
le16_to_cpu(uci.a.SpareReplUnitNum));
/* We don't actually _do_ anything about the above, just whinge */
thisNFTL->VirtualUnitTable[i] = le16_to_cpu(uci.a.VirtUnitNum);
thisNFTL->ReplUnitTable[i] = le16_to_cpu(uci.a.ReplUnitNum);
/* if (!(VUN & 0x8000) && VUN < (arraybounds)).. optimises to: */
if (le16_to_cpu(uci.a.VirtUnitNum) < thisNFTL->numvunits)
thisNFTL->EUNtable[le16_to_cpu(uci.a.VirtUnitNum) & 0x7fff] = i;
if (uci.a.VirtUnitNum == 0xffff) {
/* Free block */
thisNFTL->LastFreeEUN = i;
thisNFTL->numfreeEUNs++;
}
}
NFTLs[firstfree] = thisNFTL;
thisNFTL->LastFreeEUN = le16_to_cpu(thisNFTL->MediaHdr.FirstPhysicalEUN);
//#define PSYCHO_DEBUG
#ifdef PSYCHO_DEBUG
for (i=0; i < 10/* thisNFTL->numvunits*/; i++) {
u16 curEUN = thisNFTL->EUNtable[i];
int sillycount=100;
printk("Virtual Unit #%d: ",i);
if (!curEUN || curEUN == 0xffff) {
printk("Not present\n");
continue;
}
printk("%d", curEUN);
while ((curEUN = thisNFTL->ReplUnitTable[curEUN]) != 0xffff && --sillycount) {
printk(", %d", curEUN & 0xffff);
}
printk("\n");
}
#endif
/* OK. Now we deal with the fact that we're in the real world. Sometimes
things don't actually happen the way they're supposed to. Find, fix,
and whinge about the most common deviations from spec that we have
been known to encounter.
*/
/* Except that I haven't implemented that bit yet :) */
/* Finally, set up the block device sizes */
nftl_sizes[firstfree * 16]=thisNFTL->nr_sects;
// nftl_blocksizes[firstfree*16] = 512;
part_table[firstfree * 16].nr_sects = thisNFTL->nr_sects;
#if LINUX_VERSION_CODE < 0x20328
resetup_one_dev(&nftl_gendisk, firstfree);
#else
grok_partitions(&nftl_gendisk, firstfree, 1<<4, thisNFTL->nr_sects);
#endif
}
static void NFTL_unsetup(int i)
{
struct NFTLrecord *thisNFTL = NFTLs[i];
NFTLs[i] = NULL;
if (thisNFTL->VirtualUnitTable)
kfree(thisNFTL->VirtualUnitTable);
if (thisNFTL->ReplUnitTable)
kfree(thisNFTL->ReplUnitTable);
if (thisNFTL->EUNtable)
kfree(thisNFTL->EUNtable);
kfree(thisNFTL);
}
/* Search the MTD device for NFTL partitions */
static void NFTL_notify_func(struct mtd_info *mtd, int device)
{
int i;
unsigned long ofs;
struct NFTLMediaHeader hdr;
if (mtd) {
if (!mtd->read_oob) /* If this MTD doesn't have out-of-band data,
then there's no point continuing */
return;
for (ofs = 0; ofs < mtd->size ; ofs += mtd->erasesize) {
size_t retlen;
MTD_READ(mtd, ofs, sizeof(hdr), &retlen, (u_char *)&hdr);
if (retlen < sizeof(hdr))
continue;
if (!strncmp(hdr.DataOrgID, "ANAND", 6)) {
NFTL_setup(mtd, ofs, &hdr);
}
}
return;
}
mtd = get_mtd_device(device);
/* We're removing a known device */
for (i=0; i< MAX_NFTLS; i++) {
if (NFTLs[i] && NFTLs[i]->mtd == mtd)
NFTL_unsetup(i);
}
}
/* Actual NFTL access routines */
static u16 NFTL_findfreeblock( struct NFTLrecord *thisNFTL, int desperate )
{
/* For a given Virtual Unit Chain: find or create a free block and
add it to the chain */
/* We're passed the number of the last EUN in the chain, to save us from
having to look it up again */
u16 pot = thisNFTL->LastFreeEUN;
int silly = -1;
/* Normally, we force a fold to happen before we run out of free blocks completely */
if (!desperate && thisNFTL->numfreeEUNs < 2) {
// printk("NFTL_findfreeblock: there are too few free EUNs\n");
return 0xffff;
}
/* Scan for a free block */
do {
if (thisNFTL->VirtualUnitTable[pot] == 0xffff) {
thisNFTL->LastFreeEUN = pot;
thisNFTL->numfreeEUNs--;
return pot;
}
if (++pot > thisNFTL->lastEUN)
pot = le16_to_cpu(thisNFTL->MediaHdr.FirstPhysicalEUN);
if (!silly--) {
printk("Tell Dave he fucked up. LastFreeEUN = %d, FirstEUN = %d\n",
thisNFTL->LastFreeEUN, le16_to_cpu(thisNFTL->MediaHdr.FirstPhysicalEUN));
return 0xffff;
}
} while (pot != thisNFTL->LastFreeEUN);
return 0xffff;
}
static u16 NFTL_foldchain (struct NFTLrecord *thisNFTL, u16 thisVUC, unsigned pendingblock )
{
u16 BlockMap[thisNFTL->EraseSize / 512];
unsigned char BlockLastState[thisNFTL->EraseSize / 512];
unsigned char BlockFreeFound[thisNFTL->EraseSize / 512];
u16 thisEUN;
int block;
int silly = -1;
u16 targetEUN = 0xffff;
struct nftl_oob oob;
int inplace = 1;
memset(BlockMap, 0xff, sizeof(BlockMap));
memset(BlockFreeFound, 0, sizeof(BlockFreeFound));
thisEUN = thisNFTL->EUNtable[thisVUC];
if (thisEUN == 0xffff) {
printk(KERN_WARNING "Trying to fold non-existent Virtual Unit Chain %d!\n", thisVUC);
return 0xffff;
}
/* Scan to find the Erase Unit which holds the actual data for each
512-byte block within the Chain.
*/
while( thisEUN <= thisNFTL->lastEUN ) {
size_t retlen;
targetEUN = thisEUN;
for (block = 0 ; block < thisNFTL->EraseSize / 512; block ++) {
MTD_READOOB(thisNFTL->mtd, (thisEUN * thisNFTL->EraseSize) + (block * 512),16 , &retlen, (char *)&oob);
if (block == 2) {
if (oob.u.c.WriteInh != 0xffffffff) {
printk("Write Inhibited on EUN %d\n", thisEUN);
inplace = 0;
} else {
/* There's no other reason not to do inplace,
except ones that come later. So we don't need
to preserve inplace */
inplace = 1;
}
}
BlockLastState[block] = (unsigned char) oob.b.Status & 0xff;
switch(oob.b.Status) {
case __constant_cpu_to_le16(BLOCK_FREE):
BlockFreeFound[block]=1;
break;
case __constant_cpu_to_le16(BLOCK_USED):
if (!BlockFreeFound[block])
BlockMap[block] = thisEUN;
else
printk(KERN_WARNING "BLOCK_USED found after BLOCK_FREE in Virtual Unit Chain %d for block %d\n", thisVUC, block);
break;
case __constant_cpu_to_le16(BLOCK_IGNORE):
case __constant_cpu_to_le16(BLOCK_DELETED):
break;
default:
printk("Unknown status for block %d in EUN %d: %x\n",block,thisEUN, oob.b.Status);
}
}
if (!silly--) {
printk(KERN_WARNING "Infinite loop in Virtual Unit Chain 0x%x\n", thisVUC);
return 0xffff;
}
thisEUN = thisNFTL->ReplUnitTable[thisEUN] & 0x7fff;
}
if (inplace) {
/* We're being asked to be a fold-in-place. Check
that all blocks are either present or BLOCK_FREE
in the target block. If not, we're going to have
to fold out-of-place anyway.
*/
for (block = 0; block < thisNFTL->EraseSize / 512 ; block++) {
if (BlockLastState[block] != (unsigned char) (cpu_to_le16(BLOCK_FREE) & 0xff) &&
BlockMap[block] != targetEUN) {
//printk("Setting inplace to 0. VUC %d, block %d was %x lastEUN, and is in EUN %d (%s) %d\n",
// thisVUC, block, BlockLastState[block], BlockMap[block] , BlockMap[block]==targetEUN?"==":"!=", targetEUN);
inplace = 0;
break;
}
}
if ( pendingblock >= (thisVUC * (thisNFTL->EraseSize / 512)) &&
pendingblock < ((thisVUC + 1)* (thisNFTL->EraseSize / 512)) &&
BlockLastState[ pendingblock - (thisVUC * (thisNFTL->EraseSize / 512))] !=
(unsigned char) (cpu_to_le16(BLOCK_FREE) & 0xff)) {
//printk("Pending write not free in EUN %d. Folding out of place.\n", targetEUN);
inplace = 0;
}
}
if (!inplace) {
//printk("Cannot fold Virtual Unit Chain %d in place. Trying out-of-place\n",
// thisVUC);
/* We need to find a targetEUN to fold into. */
targetEUN = NFTL_findfreeblock(thisNFTL, 1);
if (targetEUN == 0xffff) {
/* Ouch. Now we're screwed. We need to do a
fold-in-place of another chain to make room
for this one. We need a better way of selecting
which chain to fold, because makefreeblock will
only ask us to fold the same one again.
*/
printk(KERN_WARNING"NFTL_findfreeblock(desperate) returns 0xffff.\n");
return 0xffff;
}
}
/* OK. We now know the location of every block in the Virtual Unit Chain,
and the Erase Unit into which we are supposed to be copying.
Go for it.
*/
// printk("Folding chain %d into unit %d\n", thisVUC, targetEUN);
for (block = 0; block < thisNFTL->EraseSize / 512 ; block++) {
unsigned char movebuf[512];
struct nftl_oob oob;
size_t retlen;
memset(&oob, 0xff, sizeof(oob));
/* If it's in the target EUN already, or if it's pending write, do nothing */
if (BlockMap[block] == targetEUN ||(pendingblock == (thisVUC * (thisNFTL->EraseSize / 512) + block))) {
/* Except if it's the first block, in which case we have to
set the UnitNumbers */
if (block == 0) {
thisNFTL->mtd->read_oob(thisNFTL->mtd, (thisNFTL->EraseSize * targetEUN) ,
16, &retlen, (char *)&oob);
// printk("Setting VirtUnitNum on EUN %d to %x, was %x\n", targetEUN, thisVUC,
// le16_to_cpu(oob.u.a.VirtUnitNum));
oob.u.a.VirtUnitNum = oob.u.a.SpareVirtUnitNum = cpu_to_le16(thisVUC & 0x7fff);
thisNFTL->mtd->write_oob(thisNFTL->mtd, (thisNFTL->EraseSize * targetEUN) ,
16, &retlen, (char *)&oob);
}
continue;
}
oob.b.Status = BLOCK_USED;
switch(block) {
case 0:
oob.u.a.VirtUnitNum = oob.u.a.SpareVirtUnitNum = cpu_to_le16(thisVUC & 0x7fff);
// printk("Setting VirtUnitNum on EUN %d to %x\n", targetEUN, thisVUC);
oob.u.a.ReplUnitNum = oob.u.a.SpareReplUnitNum = 0xffff;
break;
case 1:
oob.u.b.WearInfo = cpu_to_le32(3); // We don't use this, but M-Systems' drivers do
oob.u.b.EraseMark = oob.u.b.EraseMark1 = cpu_to_le16(0x3c69);
break;
case 2:
default:
oob.u.c.WriteInh = 0xffffffff;
oob.u.c.unused = 0xffffffff;
}
if (thisNFTL->mtd->read_ecc(thisNFTL->mtd, (thisNFTL->EraseSize * BlockMap[block]) + (block * 512),
512, &retlen, movebuf, (char *)&oob) == -EIO) {
if (thisNFTL->mtd->read_ecc(thisNFTL->mtd, (thisNFTL->EraseSize * BlockMap[block]) + (block * 512),
512, &retlen, movebuf, (char *)&oob) != -EIO)
printk("Error went away on retry.\n");
}
thisNFTL->mtd->write_ecc(thisNFTL->mtd, (thisNFTL->EraseSize * targetEUN) + (block * 512),
512, &retlen, movebuf, (char *)&oob);
/* FIXME: Add some error checking.... */
thisNFTL->mtd->write_oob(thisNFTL->mtd, (thisNFTL->EraseSize * targetEUN) + (block * 512),
16, &retlen, (char *)&oob);
}
/* OK. We've moved the whole lot into the new block. Now we have to free the original blocks. */
/* At this point, we have two different chains for this Virtual Unit, and no way to tell
them apart. If we crash now, we get confused. However, both contain the same data, so we
shouldn't actually lose data in this case. It's just that when we load up on a medium which
has duplicate chains, we need to free one of the chains because it's not necessary any more.
*/
thisEUN = thisNFTL->EUNtable[thisVUC];
// printk("Want to erase\n");
/* For each block in the old chain (except the targetEUN of course),
free it and make it available for future use */
while( thisEUN <= thisNFTL->lastEUN && thisEUN != targetEUN) {
size_t retlen;
struct erase_info *instr;
u16 EUNtmp;
instr = kmalloc(sizeof(struct erase_info), GFP_KERNEL);
if (!instr) {
printk(KERN_WARNING "Out of memory for struct erase_info\n");
EUNtmp = thisEUN;
thisEUN = thisNFTL->ReplUnitTable[EUNtmp] & 0x7fff;
thisNFTL->VirtualUnitTable[EUNtmp] = 0x7fff;
thisNFTL->ReplUnitTable[EUNtmp] = 0xffff;
} else {
memset(instr, 0, sizeof(struct erase_info));
instr->addr = thisEUN * thisNFTL->EraseSize;
instr->len = thisNFTL->EraseSize;
MTD_ERASE(thisNFTL->mtd, instr);
/* This is an async interface. Or will be. At which point
this code will break. */
#if 0
MTD_READOOB(thisNFTL->mtd, (thisEUN * thisNFTL->EraseSize) + 512, 16, &retlen, (char *)&oob);
printk("After erasing, EUN %d contains: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
thisEUN, oob.b.ECCSig[0],
oob.b.ECCSig[1],
oob.b.ECCSig[2],
oob.b.ECCSig[3],
oob.b.ECCSig[4],
oob.b.ECCSig[5]);
#endif
memset(&oob, 0xff, sizeof(oob));
oob.u.b.WearInfo = cpu_to_le32(3);
oob.u.b.EraseMark = oob.u.b.EraseMark1 = cpu_to_le16(0x3c69);
MTD_WRITEOOB(thisNFTL->mtd, (thisEUN * thisNFTL->EraseSize) + 512, 16, &retlen, (char *)&oob);
EUNtmp = thisEUN;
thisEUN = thisNFTL->ReplUnitTable[EUNtmp] & 0x7fff;
thisNFTL->VirtualUnitTable[EUNtmp] = 0xffff;
thisNFTL->ReplUnitTable[EUNtmp] = 0xffff;
thisNFTL->numfreeEUNs++;
}
// shifted upwards: thisEUN = thisNFTL->ReplUnitTable[thisEUN] & 0x7fff;
}
/* Make this the new start of chain for thisVUC */
thisNFTL->VirtualUnitTable[targetEUN] = thisVUC;
thisNFTL->ReplUnitTable[targetEUN] = 0xffff;
thisNFTL->EUNtable[thisVUC] = targetEUN;
return targetEUN;
}
u16 NFTL_makefreeblock( struct NFTLrecord *thisNFTL , unsigned pendingblock)
{
/* This is the part that needs some cleverness applied.
For now, I'm doing the minimum applicable to actually
get the thing to work.
Wear-levelling and other clever stuff needs to be implemented
and we also need to do some assessment of the results when
the system loses power half-way through the routine.
*/
u16 LongestChain = 0;
u16 ChainLength = 0, thislen;
u16 chain, EUN;
for (chain=0; chain < thisNFTL->MediaHdr.FormattedSize / thisNFTL->EraseSize; chain++) {
EUN = thisNFTL->EUNtable[chain];
thislen = 0;
while (EUN <= thisNFTL->lastEUN) {
thislen++;
// printk("VUC %d reaches len %d with EUN %d\n", chain, thislen, EUN);
EUN = thisNFTL->ReplUnitTable[EUN] & 0x7fff;
if (thislen > 0xff00) {
printk("Endless loop in Virtual Chain %d: Unit %x\n", chain, EUN);
}
if (thislen > 0xff10) {
/* Actually, don't return failure. Just ignore this chain and
get on with it. */
thislen = 0;
break;
}
}
if (thislen > ChainLength) {
// printk("New longest chain is %d with length %d\n", chain, thislen);
ChainLength = thislen;
LongestChain = chain;
}
}
if (ChainLength < 2) {
printk(KERN_WARNING "No Virtual Unit Chains available for folding. Failing request\n");
return 0xffff;
}
return NFTL_foldchain (thisNFTL, LongestChain, pendingblock);
}
static int NFTL_readblock(struct NFTLrecord *thisNFTL,
unsigned block, char *buffer)
{
u16 lastgoodEUN = 0xffff;
u16 thisEUN = thisNFTL->EUNtable[block / (thisNFTL->EraseSize / 512)];
unsigned long blockofs = (block * 512) & (thisNFTL->EraseSize -1);
int silly = -1;
if (thisEUN == 0xffff) thisEUN = 0;
while(thisEUN && (thisEUN & 0x7fff) != 0x7fff) {
struct nftl_bci bci;
size_t retlen;
MTD_READOOB(thisNFTL->mtd, (thisEUN * thisNFTL->EraseSize) + blockofs,8, &retlen, (char *)&bci);
switch(bci.Status) {
case __constant_cpu_to_le16(BLOCK_FREE):
thisEUN = 0;
break;
case __constant_cpu_to_le16(BLOCK_USED):
lastgoodEUN = thisEUN;
break;
case __constant_cpu_to_le16(BLOCK_IGNORE):
case __constant_cpu_to_le16(BLOCK_DELETED):
break;
default:
printk("Unknown status for block %d in EUN %d: %x\n",block,thisEUN, bci.Status);
}
if (!silly--) {
printk(KERN_WARNING "Infinite loop in Virtual Unit Chain 0x%x\n",block / (thisNFTL->EraseSize / 512));
return 1;
}
if (thisEUN)
thisEUN = thisNFTL->ReplUnitTable[thisEUN] & 0x7fff;
}
if (lastgoodEUN == 0xffff) {
memset(buffer, 0, 512);
} else {
loff_t ptr = (lastgoodEUN * thisNFTL->EraseSize) + blockofs;
size_t retlen;
u_char eccbuf[6];
thisNFTL->mtd->read_ecc(thisNFTL->mtd, ptr, 512, &retlen, buffer, eccbuf);
}
return 0;
}
/* NFTL_findwriteunit: Return the unit number into which we can write
for this block. Make it available if it isn't already
*/
static inline u16 NFTL_findwriteunit(struct NFTLrecord *thisNFTL, unsigned block)
{
u16 lastEUN;
u16 thisVUC = block / (thisNFTL->EraseSize / 512);
u16 writeEUN;
unsigned long blockofs = (block * 512) & (thisNFTL->EraseSize -1);
size_t retlen;
int silly = 0x10000, silly2 = 3;
struct nftl_oob oob;
int debug=0;
do {
/* Scan the media to find a unit in the VUC which has
a free space for the block in question.
*/
/* This condition catches the 0x[7f]fff cases, as well as
being a sanity check for past-end-of-media access
*/
lastEUN = 0xffff;
writeEUN = thisNFTL->EUNtable[thisVUC];
while(writeEUN <= thisNFTL->lastEUN) {
struct nftl_bci bci;
size_t retlen;
lastEUN = writeEUN;
MTD_READOOB(thisNFTL->mtd, (writeEUN * thisNFTL->EraseSize)
+ blockofs,8, &retlen, (char *)&bci);
if (debug)
printk("Status of block %d in EUN %d is %x\n", block , writeEUN, le16_to_cpu(bci.Status));
switch(bci.Status) {
case __constant_cpu_to_le16(BLOCK_FREE):
return writeEUN;
case __constant_cpu_to_le16(BLOCK_DELETED):
case __constant_cpu_to_le16(BLOCK_USED):
case __constant_cpu_to_le16(BLOCK_IGNORE):
break;
default:
// Invalid block. Don't use it any more. Must implement.
break;
}
if (!silly--) {
printk(KERN_WARNING "Infinite loop in Virtual Unit Chain 0x%x\n", thisVUC);
return 0xffff;
}
/* Skip to next block in chain */
writeEUN = thisNFTL->ReplUnitTable[writeEUN] & 0x7fff;
}
/* OK. We didn't find one in the existing chain, or there
is no existing chain. */
/* Try to find an already-free block */
writeEUN = NFTL_findfreeblock(thisNFTL, 0);
if (writeEUN == 0xffff) {
/* That didn't work - there were no free blocks just
waiting to be picked up. We're going to have to fold
a chain to make room.
*/
/* First remember the start of this chain */
// u16 startEUN = thisNFTL->EUNtable[thisVUC];
//printk("Write to VirtualUnitChain %d, calling makefreeblock()\n", thisVUC);
writeEUN = NFTL_makefreeblock(thisNFTL, block);
if (writeEUN == 0xffff) {
/* Ouch. This should never happen - we should
always be able to make some room somehow.
If we get here, we've allocated more storage
space than actual media, or our makefreeblock
routine is missing something.
*/
printk(KERN_WARNING "Cannot make free space.\n");
return 0xffff;
}
// printk("Restarting scan\n");
lastEUN = 0xffff;
// debug = 1;
continue;
#if 0
if (startEUN != thisNFTL->EUNtable[thisVUC]) {
/* The fold operation has moved the chain
that we're looking at. Start the scan again.
*/
continue;
}
#endif
}
/* We've found a free block. Insert it into the chain. */
if (lastEUN != 0xffff) {
/* Addition to an existing chain. Make the previous
last block in the chain point to this one.
*/
//printk("Linking EUN %d to EUN %d in VUC %d\n",
// lastEUN, writeEUN, thisVUC);
/* Both in our cache... */
thisNFTL->ReplUnitTable[lastEUN] = writeEUN;
/* ... and on the flash itself */
MTD_READOOB(thisNFTL->mtd, (lastEUN * thisNFTL->EraseSize), 16, &retlen,
(char *)&oob);
oob.u.a.ReplUnitNum = oob.u.a.SpareReplUnitNum = cpu_to_le16(writeEUN);
MTD_WRITEOOB(thisNFTL->mtd, (lastEUN * thisNFTL->EraseSize), 16, &retlen,
(char *)&oob);
thisVUC |= 0x8000; /* It's a replacement block */
} else {
/* The first block in a new chain */
thisNFTL->EUNtable[thisVUC] = writeEUN;
}
/* Now set up the actual EUN we're writing into */
/* Both in our cache... */
thisNFTL->VirtualUnitTable[writeEUN] = thisVUC;
thisNFTL->ReplUnitTable[writeEUN] = 0xffff;
/* ... and on the flash itself */
MTD_READOOB(thisNFTL->mtd, writeEUN * thisNFTL->EraseSize, 16,
&retlen, (char *)&oob);
oob.u.a.VirtUnitNum = oob.u.a.SpareVirtUnitNum = cpu_to_le16(thisVUC);
MTD_WRITEOOB(thisNFTL->mtd, writeEUN * thisNFTL->EraseSize, 16,
&retlen, (char *)&oob);
return writeEUN;
} while (silly2--);
printk(KERN_WARNING "Error folding to make room for Virtual Unit Chain 0x%x\n", thisVUC);
return 0xffff;
}
static int NFTL_writeblock(struct NFTLrecord *thisNFTL, unsigned block,
char *buffer)
{
u16 writeEUN;
unsigned long blockofs = (block * 512) & (thisNFTL->EraseSize -1);
size_t retlen;
u16 eccbuf[8];
// if (thisEUN == 0xffff) thisEUN = 0;
writeEUN = NFTL_findwriteunit(thisNFTL, block);
// printk("writeblock(%d): Write to Unit %d\n", block, writeEUN);
if (writeEUN == 0xffff) {
printk(KERN_WARNING "NFTL_writeblock(): Cannot find block to write to\n");
/* If we _still_ haven't got a block to use, we're screwed */
return 1;
}
// printk("Writing block %lx to EUN %x\n",block, writeEUN);
thisNFTL->mtd->write_ecc(thisNFTL->mtd,
(writeEUN * thisNFTL->EraseSize) + blockofs,
512, &retlen, (char *)buffer, (char *)eccbuf);
eccbuf[3] = BLOCK_USED;
eccbuf[4] = eccbuf[5] = eccbuf[6] = eccbuf[7] = 0xffff;
thisNFTL->mtd->write_oob(thisNFTL->mtd,
(writeEUN * thisNFTL->EraseSize) + blockofs,
16, &retlen, (char *)eccbuf);
return 0;
}
static int nftl_ioctl(struct inode * inode, struct file * file,
unsigned int cmd, unsigned long arg)
{
struct NFTLrecord *thisNFTL;
thisNFTL = NFTLs[MINOR(inode->i_rdev) / 16];
if (!thisNFTL) return -EINVAL;
switch (cmd) {
case HDIO_GETGEO: {
struct hd_geometry g;
g.heads = thisNFTL->heads;
g.sectors = thisNFTL->sectors;
g.cylinders = thisNFTL->cylinders;
g.start = part_table[MINOR(inode->i_rdev)].start_sect;
return copy_to_user((void *)arg, &g, sizeof g) ? -EFAULT : 0;
}
case BLKGETSIZE: /* Return device size */
if (!arg) return -EINVAL;
return put_user(part_table[MINOR(inode->i_rdev)].nr_sects,
(long *) arg);
case BLKFLSBUF:
if(!capable(CAP_SYS_ADMIN)) return -EACCES;
fsync_dev(inode->i_rdev);
invalidate_buffers(inode->i_rdev);
return 0;
case BLKRRPART:
if (!capable(CAP_SYS_ADMIN)) return -EACCES;
if (thisNFTL->usecount > 1) {
// printk("Use count %d\n", thisNFTL->usecount);
return -EBUSY;
}
#if LINUX_VERSION_CODE < 0x20328
resetup_one_dev(&nftl_gendisk, MINOR(inode->i_dev) / 16);
#else
grok_partitions(&nftl_gendisk, MINOR(inode->i_dev) / 16, 1<<4, thisNFTL->nr_sects);
#endif
return 0;
// RO_IOCTLS(inode->i_rdev, arg); /* ref. linux/blk.h */
default:
return -EINVAL;
}
}
void nftl_request(RQFUNC_ARG)
{
unsigned int dev, block, nsect;
struct NFTLrecord *thisNFTL;
char *buffer;
repeat:
//cli();
INIT_REQUEST;
dev = MINOR(CURRENT->rq_dev);
block = CURRENT->sector;
nsect = CURRENT->nr_sectors;
buffer = CURRENT->buffer;
if (dev >= MAX_NFTLS * 16) {
printk("fl: bad minor number: device=%s\n",
kdevname(CURRENT->rq_dev));
end_request(0); /* fail */
goto repeat;
}
thisNFTL = NFTLs[dev / 16];
spin_lock(&thisNFTL->mutex);
if (block + nsect >= part_table[dev].nr_sects) {
printk("nftl%c%d: bad access: block=%d, count=%d\n",
(MINOR(CURRENT->rq_dev)>>6)+'a', dev & 0xf, block, nsect);
spin_unlock(&thisNFTL->mutex);
end_request(0); /* fail */
goto repeat;
}
block += part_table[dev].start_sect;
if (CURRENT->cmd == READ) {
for ( ; nsect > 0; nsect-- , block++, buffer+= 512) {
/* Read a single sector to CURRENT->buffer + (512 * i) */
if (NFTL_readblock(thisNFTL, block, buffer)) {
spin_unlock(&thisNFTL->mutex);
end_request(0);
goto repeat;
}
}
spin_unlock(&thisNFTL->mutex);
end_request(1);
goto repeat;
}
else if (CURRENT->cmd == WRITE) {
// printk("NFTL write request of 0x%x sectors @ %lx\n",nsect, block);
for ( ; nsect > 0; nsect-- , block++, buffer+= 512) {
/* Read a single sector to CURRENT->buffer + (512 * i) */
if (NFTL_writeblock(thisNFTL, block, buffer)) {
// printk("NFTL write request failed\n");
spin_unlock(&thisNFTL->mutex);
end_request(0);
goto repeat;
}
}
// printk("NFTL write request completed OK\n");
spin_unlock(&thisNFTL->mutex);
end_request(1);
goto repeat;
}
else {
spin_unlock(&thisNFTL->mutex);
end_request(0); /* fail */
goto repeat;
}
}
static int nftl_open(struct inode *ip, struct file *fp)
{
struct NFTLrecord *thisNFTL;
printk("NFTL_open called\n");
thisNFTL = NFTLs[MINOR(ip->i_rdev) / 16];
if (!thisNFTL)
return -ENODEV;
thisNFTL->usecount++;
MOD_INC_USE_COUNT;
if (thisNFTL->mtd->module)
__MOD_INC_USE_COUNT(thisNFTL->mtd->module);
return 0;
}
static int nftl_release(struct inode *inode, struct file *fp)
{
struct super_block *sb = get_super(inode->i_rdev);
struct NFTLrecord *thisNFTL;
thisNFTL = NFTLs[MINOR(inode->i_rdev) / 16];
fsync_dev(inode->i_rdev);
if (sb) invalidate_inodes(sb);
invalidate_buffers(inode->i_rdev);
if (thisNFTL->mtd->sync)
thisNFTL->mtd->sync(thisNFTL->mtd);
thisNFTL->usecount--;
MOD_DEC_USE_COUNT;
if (thisNFTL->mtd->module)
__MOD_DEC_USE_COUNT(thisNFTL->mtd->module);
return 0;
}
#if LINUX_VERSION_CODE < 0x20326
static struct file_operations nftl_fops = {
NULL, /* lseek - default */
block_read, /* read - block dev read */
block_write, /* write - block dev write */
NULL, /* readdir - not here! */
NULL, /* select */
nftl_ioctl, /* ioctl */
NULL, /* mmap */
nftl_open, /* open */
NULL, /* flush */
nftl_release, /* no special release code... */
block_fsync /* fsync */
};
#else
static struct block_device_operations nftl_fops =
{
open: nftl_open,
release: nftl_release,
ioctl: nftl_ioctl
};
#endif
/****************************************************************************
*
* Module stuff
*
****************************************************************************/
#if LINUX_VERSION_CODE < 0x20300
#ifdef MODULE
#define init_nftl init_module
#define cleanup_nftl cleanup_module
#endif
#define __exit
#endif
static struct mtd_notifier nftl_notifier = {NFTL_notify_func, NULL};
static int __init init_nftl(void)
{
int i;
struct mtd_info *mtd;
printk(KERN_NOTICE "M-Systems NAND Flash Translation Layer driver. (C) 1999 MVHI\n");
#ifdef PRERELEASE
printk(KERN_INFO"$Id: nftl.c,v 1.20 2000/01/31 13:28:14 dwmw2 Exp $\n");
#endif
if (register_blkdev(NFTL_MAJOR, "nftl", &nftl_fops)){
printk("unable to register NFTL block device\n");
} else {
#if LINUX_VERSION_CODE < 0x20320
blk_dev[MAJOR_NR].request_fn = nftl_request;
#else
blk_init_queue(BLK_DEFAULT_QUEUE(MAJOR_NR), &nftl_request);
#endif
for (i=0; i < 256 ; i++) {
nftl_blocksizes[i] = 1024;
#if LINUX_VERSION_CODE > 0x20328
nftl_max_sectors[i] = 1;
#endif
}
#if LINUX_VERSION_CODE > 0x20328
max_sectors[NFTL_MAJOR] = nftl_max_sectors;
#endif
blksize_size[NFTL_MAJOR] = nftl_blocksizes;
nftl_gendisk.next = gendisk_head;
gendisk_head = &nftl_gendisk;
}
register_mtd_notifier(&nftl_notifier);
for (i=0; i < MAX_MTD_DEVICES; i++) {
mtd = get_mtd_device(i);
if (mtd)
NFTL_notify_func(mtd, i);
}
return 0;
}
static void __exit cleanup_nftl(void)
{
struct gendisk *gd, **gdp;
int i;
unregister_mtd_notifier(&nftl_notifier);
for (i=0; i< MAX_NFTLS; i++)
if (NFTLs[i])
NFTL_unsetup(i);
unregister_blkdev(NFTL_MAJOR, "nftl");
#if LINUX_VERSION_CODE < 0x20320
blk_dev[MAJOR_NR].request_fn = 0;
#else
blk_cleanup_queue(BLK_DEFAULT_QUEUE(MAJOR_NR));
#endif
for (gdp = &gendisk_head; *gdp; gdp = &((*gdp)->next))
if (*gdp == &nftl_gendisk) {
gd = *gdp; *gdp = gd->next;
break;
}
}
#if LINUX_VERSION_CODE > 0x20300
module_init(init_nftl);
module_exit(cleanup_nftl);
#endif
--
dwmw2
-
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo en vger.rutgers.edu
Please read the FAQ at http://www.tux.org/lkml/
Más información sobre la lista de distribución Ayuda